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Abstract

Detecting affordance regions in 3D data is a challeng-
ing task due to diverse geometries and representations like
meshes and point clouds. While crucial for robotics and
human-object interaction, existing methods rely on labeled
datasets or geometric features, limiting their scalability. We
utilize a novel label-free pipeline for affordance detection
using neural fields and pre-trained vision-language mod-
els. Building on the 3D Highlighter architecture, our frame-
work uses differentiable rendering and CLIP embeddings
to semantically localize affordance regions on point clouds
through text prompts. The method eliminates manual an-
notations while adapting seamlessly to various 3D formats.
Results demonstrate acceptable performance for unsuper-
vised object manipulation and interaction systems. QOur
code is available here. index terms— affordance regions,
neural field, vision-language models, 3D Highlighter

1. Introduction

The advancement of robotics and intelligent systems de-
mands sophisticated object interaction capabilities in real-
world environments. A crucial aspect of this interac-
tion is affordance detection— identifying regions of ob-
jects optimized for specific interactions like gripping, sit-
ting, or pouring. While computer vision has made sig-
nificant strides in object detection and segmentation, af-
fordance detection presents unique challenges in bridging
visual perception with functional understanding. Tradi-
tional affordance detection methods rely heavily on super-
vised learning with extensive annotated datasets or geo-
metric approaches that struggle with complex, ambiguous
functionalities. These limitations have motivated the explo-
ration of alternative approaches. Recent advances in vision-
language models like CLIP [6] and neural field-based repre-
sentations [7] offer promising solutions by enabling seman-

tic understanding and flexible 3D geometry representation.
Building on the 3DHighlighter architecture [3], we present
a system that combines neural fields, differentiable render-
ing [1], and pre-trained vision-language models for affor-
dance detection in 3D data. Our framework projects 3D
point clouds to 2D renders and uses CLIP to evaluate align-
ment between rendered views and text prompts through em-
bedding similarity. This approach eliminates the need for
manual annotations or 3D pre-training while maintaining
adaptability across different 3D data formats.

2. Related Work
2.1. Traditional Affordance Detection

Traditional affordance detection relied on geometric
feature extraction and manual annotation, utilizing hand-
crafted features like surface curvature and shape descrip-
tors to identify interaction regions. Rule-based systems
mapped these features to affordance categories - for exam-
ple, identifying flat surfaces as ”support” regions or cylin-
drical shapes as “grasp” regions. While effective for sim-
ple geometries, these methods struggled with complex in-
teractions and required extensive manual annotation. These
limitations ultimately motivated the development of more
flexible learning-based approaches.

2.2. 3D Affordance Detection and Datasets

The development of 3D affordance understanding was
significantly advanced by Deng et al.’s 3D AffordanceNet
[4], which established protocols for full-shape, partial-view,
and rotation-invariant affordance estimations. While the ap-
proach successfully demonstrated affordance learning from
3D data, it relied heavily on supervised learning with man-
ual annotations. While their exploration of semi-supervised
learning methods was promising, it emphasized the need for
more efficient, label-free approaches - a limitation that mo-
tivates our work’s focus on leveraging pre-trained vision-
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language models to reduce dependency on manual annota-
tions.

2.3. Interaction-driven 3D Affordance Grounding
Network (JAG)

IAG learns affordances by aligning 2D interaction im-
ages with 3D representations [8]. However, its dependence
on specific datasets and pre-defined categories motivated
our more flexible vision-language approach to semantic lo-
calization.

3. Method

3.1. Original Pipeline Overview

The initial pipeline proposed in the original paper uti-
lizes a 3D mesh as input to a neural network that aims to
highlight probabilities for each mesh vertex. Subsequently,
the 3D mesh is projected into 2D space through camera-
based rendering techniques. The rendered image, along
with a descriptive text prompt, is processed by the CLIP
model to generate corresponding image and text embed-
dings. The cosine similarity between these embeddings is
computed, and its negative value serves as the loss function
for training the neural network.
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During experimental validation, our team encountered

challenges in reproducing the results reported in the original
paper, despite using the authors’ provided implementation.
As illustrated in Fig. 1 and Fig. 2 and Tab. 1, the output ex-
hibits significant variability across different objects, camera
angles, and hyperparameter configurations.
These findings suggest that achieving consistent affordance
highlighting remains a challenging task without a defini-
tive solution. Based on extensive experimentation involving
modifications to the neural network architecture, optimiza-
tion of training hyperparameters, and implementation of
various camera rendering techniques, significant improve-
ments remained elusive. Analysis of these experimental re-
sults revealed a fundamental limitation: the CLIP model’s
inherent difficulty in establishing precise spatial correspon-
dences between localized image regions and their textual
descriptions as well as being biased towards holistic object
classification rather than part segmentation.

3.2. Adaptation to Point Cloud

We adapt the current pipeline to processing Point Cloud,
which is a crucial data type, since it is more practical for
real-world applications compared to meshes which often
need to be manually created or reconstructed. Point clouds
can be directly captured from various real-world sensors
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Figure 1. Left image is from the original paper. the right is the im-
age generated by running the demo code released from the paper’s
researchersWe optimize 3D Highlighter on a mesh of a horse with
the target localization ‘shoes’.
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Figure 2. Left image is from the original paper. the right is the im-
age generated by running the demo code released from the paper’s
researchers.We optimize 3D Highlighter on a mesh of a dog with
the target localization ‘hat’

Hyperparameter Value Clip-score
Learning rate 0.001 -0.3425
Learning rate 0.0001 -0.3486
Learning rate le-05 -0.3352
Depth 3 -0.3200
Depth 4 -0.3376
Depth 5 0.3181
Number of views 3 -0.3408
Number of views 5 -0.3471
Number of views 7 -0.3181

Table 1. Exploring different hyperparameters for the prompt: A
3D render of a gray candle with highlighted hat

like RGB-D cameras, LiDAR, and other 3D scanning de-
vices. Point clouds represent the raw 3D data as captured,
preserving the original geometric information. Meshes re-
quire additional processing and assumptions to reconstruct
surfaces between points, which can introduce artifacts or
errors.

Three primary approaches have been identified for adapt-
ing the 3D Highlighter model to work with point cloud data:

1. Differentiable Point Cloud Rendering: Generation
of images where each point is represented as a ball in
3D space using PyTorch3D

2. Mesh Approximation: Surface reconstruction from
point cloud data using Open3D techniques



3. Voxel-based Conversion: Transformation of point
clouds to voxels and subsequently to voxel meshes us-
ing Kaolin ops conversions

3.2.1 Analysis of Approaches

After thorough evaluation, the differentiable point cloud
renderer (approach 1) emerges as the optimal solution. This
determination is supported by the following advantages:

* Geometric Preservation: Maintains the original point
cloud structure while enabling direct visualization and
optimization of the highlighting process.

* Direct Processing: Avoids potential information loss
or artifacts that might be introduced through mesh re-
construction or voxelization.

3.2.2 Limitations of Alternative Approaches

Surface reconstruction methods (approach 2) have notable
drawbacks, including the potential introduction of geomet-
ric errors or artifacts, a strong dependence on point cloud
density and distribution for quality and additional computa-
tional overhead without significant benefits. Similarly, the
voxelization approach (approach 3) is constrained by the
discretization of continuous 3D space, which leads to a loss
of fine geometric details. It also demands higher memory
usage and computational resources, with quality trade-offs
that are heavily resolution-dependent.

3.2.3 Alignment with Original Methodology

The differentiable point cloud renderer approach aligns with
the original 3D Highlighter methodology through direct
CLIP compatibility via 2D image rendering and preserva-
tion of original point cloud geometry. This strategy necessi-
tates minimal architectural modifications while maintaining
core highlighting capabilities. The approach establishes a
robust foundation for extending the 3D Highlighter to point
cloud data while preserving essential functionality and per-
formance characteristics.

4. Experiments

In this section, we detail the methodology and outcomes
of three key experiments designed to evaluate our pipeline’s
ability to generate affordance labels without direct supervi-
sion, leveraging the 3D AffordanceNet dataset.

4.1. Dataset and Experimental Setup

We utilized the 3D AffordanceNet dataset, which in-
cludes 22,949 shapes across 23 semantic classes and 18 af-
fordance types. Our focus was on specific household classes
and affordances related to hand-object interactions. This

setup is common in the three experiments we will see in
this section.
Setup:

* Subsets Definition: We defined two subsets from the
training set: a validation set for hyperparameter tuning
and a test set for evaluating generalization.

* Prompt Strategies: Strategies ranged from basic de-
scriptions to affordance-specific phrases to guide af-
fordance highlighting.

¢ Grid Search and Hyperparameter Exploration: A
grid search approach was employed to systematically
explore various hyperparameters, including learning
rates, network depths, number of views, thresholds,
number of augmentations, and prompt strategies, with
models trained for a fixed number of iterations 500 to
evaluate their impact on model performance and opti-
mize affordance segmentation.

* Evaluation Pipeline: Using the defined subsets, we
evaluated the model first on the validation set to op-
timize hyperparameters using grid search. To de-
termine the best-performing configurations, we used
both single-threshold IoU and the arithmetic mean IoU
(aloU), calculated across thresholds ranging from 0O to
0.99 in 0.01 increments. The aloU provided a robust
evaluation metric by averaging performance across
multiple thresholds. The test set was then used to mea-
sure generalization with a fixed threshold, with visual
inspections and quantitative metrics guiding the final
analysis.

* Visual Assessment: Ground truth renders were com-
pared with model outputs to handpick the best-
performing configurations for further evaluation.

4.2. Experiment 1: Single Object and Affordance
Pair

Objective: Evaluate the model’s performance on a sin-
gle object (knife) with a single affordance (cut).

Methodology: A grid search of hyperparameters and
prompt strategies was conducted, with each configuration
trained for a fixed number of 500 iterations. Three prompt
strategies were employed:

e Basic: “A 3D render of a gray Knife with highlighted
cut regions.”

e Action: “A 3D render indicating the parts of the gray
knife that can be used to cut.”

* Affordance-Specific (Cut): “A 3D render of a gray
knife with highlighted regions showing the sharp blade
edge and cutting tip, emphasizing the main cutting sur-
face and pointed end.”



Config Shape  Prompt Strategy = Threshold Learning Rate Depth num. aug Views IoU aloU
Config 1 d7 Basic 0.01 0.001 4 1 2 0.938 0.109
Config 2 24 Affordance-Specific 0.94 0.001 4 1 2 0.394  0.391
Config 3 le Action 0.1 0.001 4 3 4 0.703 0.117
Config 4 3a Action 0.02 0.001 4 3 2 0.712  0.044
Config 5 d7 Basic 0.1 0.001 4 3 2 0.972  0.1389

Table 2. Top-performing hyperparameter configurations and performance (IoU and aloU) on the validation set for the cut affordance.

4.2.1 Validation Set Observations

As summarized in Tab. 2, the validation set consisted of 5
objects, each representing the cut affordance for the knife
class. A total of 240 renders were evaluated using IoU at
specific thresholds and the arithmetic mean IoU (aloU) over
thresholds ranging from 0 to 0.99 in 0.01 increments. Many
configurations achieved their highest IoU at low thresholds
(e.g., 0.01), which often resulted in excessive highlighting
of high-probability regions. While these values could ap-
pear promising, they often failed to capture meaningful af-
fordance regions. To address this, aloU was used as a more
robust measure, balancing performance across thresholds.

Visual assessment played a critical role in identifying the
best configurations. High IoU or aloU values did not al-
ways align with the ground truth. For example, Config 2
(Affordance-Specific) achieved the highest aloU (0.394) but
tended to over-highlight large portions of the object. Con-
versely, some configurations failed to highlight any regions,
resulting in low scores. Config 3 (Action) and 5 (Basic) pro-
vided the best balance, achieving aloU values of 0.117 and
0.1389, respectively, with Config 5 also achieving a high
IoU (0.972) at a threshold of 0.1.

A notable trend was the peak IoU observed at thresh-
olds between 0.01 and 0.1 (see Fig. 3). To balance preci-
sion and recall, a fixed threshold of 0.1 was selected for the
test set evaluation. This approach minimizes the inclusion
of low-probability regions while retaining confident affor-
dance predictions, ensuring a more reliable evaluation of
generalization.

Fig. 4 and Fig. 5 illustrate the ground truth and high-
lighted renders for Configs 3 and 5, showcasing their strong
alignment with the intended affordance regions. These ob-
servations highlight the importance of combining quantita-
tive metrics with qualitative visual assessment to identify
reliable configurations.

4.2.2 Test Set Observations

The two best-performing hyperparameter configurations
from the validation set (Config 3 and Config 5) were tested
on 5 unseen objects from the test set, all belonging to the
same class (knife) and affordance (cut) as the validation
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Figure 3. IoU vs. Threshold for Config 5.

(a) Ground Truth Render (b) Highlighted Render

Figure 4. Comparison of ground truth and highlighted affordance
regions for Config 3.

(a) Ground truth render. (b) Highlighted render.

Figure 5. Comparison of ground truth and highlighted affordance
regions for Config 5.

set. The test aimed to evaluate the generalization ability
of these configurations. Predictions showed a mix of out-



comes, summarized below:

As it can be seen in Fig. 6, for Config 3 (Action Prompt),
3 out of 5 objects had well-highlighted affordance regions
with decent IoU values, indicating good generalization to
other knife types. This was a significant improvement com-
pared to the validation phase, where only 1% of renders had
decent affordance highlighting. Object 3 achieved the best
IoU (IoU = 0.8630) and the mean IoU for Config 3 across
the test set was calculated as 0.339. The results can be seen
in Tab. 3.

(a) Knife 2 (b) Knife 3 (c) Knife 5
Figure 6. Affordance highlights for three objects predicted using

Config 3.

Object IoU

Object 1 0.0000
Object 2 0.4820
Object 3 0.8630
Object 4 0.0000
Object 5 0.3534

Mean IoU  0.339

Table 3. IoU results for the five test objects, with a calculated
Mean IoU of 0.339.

In contrast, Config 5 (Basic Prompt) did not perform as
well. Only one object exhibited decent highlighting, while
the rest were either not highlighted at all or had irrelevant
regions (e.g., the knife handle) highlighted. This confirmed
that the Action Prompt combined with the selected hyper-
parameters in Config 3 was more effective for affordance
detection in this experiment.

4.3. Experiment 2: Single Object Class with Multi-
ple Affordances

Objective: Evaluate the model’s ability to generalize
across multiple affordances (Openable, Pushable, Pull)
within the door class.

Methodology: This experiment required segmenting
multiple affordances within the same object class in a
shared context.

Two prompt strategies were employed:

e Basic: “A 3D render of a gray door with highlighted
{affordance_type} regions.”

¢ Affordance-Specific:

— Openable: “A 3D render of a gray door with
highlighted hinge regions and handle areas that
enable opening movement.”

— Pushable: “A 3D render of a gray door with
highlighted flat surface regions designed for
pushing.”

— Pull: “A 3D render of a gray door with high-
lighted regions showing handles, grip spots, or
edges used for pulling.”

4.3.1 Validation Set Observations

We evaluated over 640 renders generated from the grid
search with various hyperparameters and prompt strate-
gies. The results were underwhelming. The affordance-
specific prompt failed to outperform the basic prompt and
often struggled to produce meaningful affordance high-
lights. Many renders either showed no highlighted regions
or over-highlighted the entire door surface, leading to poor
IoU and aloU scores. This likely stemmed from the small,
localized nature of these affordances and the model’s dif-
ficulty capturing precise spatial features like handles or
hinges.

Additionally, the general nature of affordance terms such
as pushable likely contributed to overly broad or inaccurate
predictions. For example, the model often interpreted push
as applicable to the entire door surface, further reducing its
ability to localize specific affordance regions. Only a small

(a) Ground Truth (b) Highlighted

Figure 7. Comparison of ground truth and highlighted affordance
regions for Config 2.

subset of renders showed average performance. The best
configurations for each affordance, summarized in Tab. 4,
provided relatively better results but were still suboptimal
overall. Due to the limited success in the validation set, all
three selected configurations were tested on the test set to



Config Affordance Prompt Strategy Threshold Learning Rate Depth Num. Aug Views IoU / aloU

Config 1 Pushable Basic 0.3 0.0001 5 3 2 0.215/70.1623
Config2  Openable Basic 0.1 0.0001 5 3 2 0.6694 / 0.3837
Config 3 Pull Basic 0.1 0.001 4 3 2 0.6670/0.6619

Table 4. Top-performing configurations for the affordances pushable, openable, and pull on the door class.

further evaluate their generalization capabilities. Fig. 7 il-
lustrate the ground truth and highlighted renders for Config
2.

4.3.2 Test Set Observations

The best-performing configurations for each affordance
(pushable, openable, pull), identified using the basic and
affordance-specific prompts, were tested on 5 unseen ob-
jects in the test set. However, the results were disappoint-
ing, confirming the challenges observed during validation.

Most renders were either unhighlighted or misaligned
with the intended regions, underscoring the difficulty of
generalizing affordances requiring precise spatial localiza-
tion. The diverse geometries in the test set likely com-
pounded this issue. The mean IoU (mloU) values were:
Pull (0.0000), Pushable (0.0930), and Openable (0.0270).
Even the pushable affordance, with the highest mloU,
showed largely misaligned predictions upon visual inspec-
tion.

These results highlight the limitations of CLIP-based af-
fordance detection for localized affordances. Despite opti-
mized hyperparameters and prompt strategies, the combi-
nation of diverse geometries, small affordance regions, and
general affordance terms posed significant challenges to ac-
curate predictions.

4.4. Experiment 3: Single Affordance Across Mul-
tiple Classes

Objective: Evaluate the model’s ability to generalize
a single affordance (contain) across diverse object classes
(vase, bowl, bottle).

Methodology: We conducted a grid search to opti-
mize hyperparameters, utilizing the following three prompt
strategies:

* Basic: “A 3D render of a gray {shape_class} with
highlighted contain regions.”

* Action: “A 3D render indicating the parts of the gray
{shape_class} that can be used to contain.”

* Affordance-Specific: “A 3D render of a gray
{shape_class} highlighting the internal cavity or sur-
face regions designed for containing objects.”

4.4.1 Validation Set Observations

We evaluated over 412 renders using IoU and alou along
with visual assessment. The top-performing configurations,
summarized in Tab. 5, revealed better highlighting perfor-
mance compared to previous experiments. However, this
improvement can be attributed to the contain affordance,
which requires highlighting an object’s internal cavity or
entire surface, making it less complex than affordances
needing localized precision. As a result, predictions for this
affordance often aligned well with the ground truth, leading
to higher IoU scores.

The affordance-specific prompt consistently outper-
formed basic and action prompts across all shape classes,
providing the highest IoU and aloU values. Its detailed de-
scriptions of internal cavities or containing surfaces enabled
more accurate predictions aligned with the ground truth.

Among the shape classes, the bottle configuration
achieved the best results (loU = 0.9043, aloU = 0.6939),
with precise and semantically aligned highlights confirmed
through visual inspection. Configurations for the vase also
performed well but were less consistent.

These findings demonstrate the effectiveness of the
affordance-specific prompt for this experiment. The ge-
ometry and characteristics of each shape class also influ-
enced performance. Based on these results, the bottle con-
figuration was selected for testing generalization on the test
set. Fig. 8 illustrates examples of the ground truth and
highlighted renders for the best-performing configurations
across the three shape classes.

(a) Bottle

(b) Vase

(c) Bowl

Figure 8. Comparison of highlighted affordance regions for the
contain affordance across bottle, vase, and bowl classes.



Shape Class Prompt Strategy Threshold Learning Rate Depth Num. Aug Views IoU / aloU
Bottle Affordance-Specific 0.1 0.001 4 3 2 0.9043 / 0.6939
Vase Affordance-Specific 0.1 0.001 4 1 3 0.652/0.648
Bowl Affordance-Specific 0.1 0.001 5 1 3 0.915570.295

Table 5. Top-performing configurations for the affordance contain across bottle, vase, and bowl classes.

4.4.2 Test Set Observations

The best-performing configuration was tested on 5 test ob-
jects across three classes to evaluate generalization. Results
revealed significant limitations in generalizing the contain
affordance across classes.

Most renders were unhighlighted or incorrectly high-
lighted. Only the bottle class, which formed the basis for
the best validation configuration, exhibited any affordance
detection. However, its predictions were subpar, with a
mean IoU of 0.345 at a threshold of 0.13. The other classes
(vase, bowl) showed no meaningful affordance detection,
with near-zero IoU values.

These findings suggest that while the affordance-specific
prompt and hyperparameters were effective for bottles, they
failed to generalize to other classes like bowl and vase. The
model’s reliance on bottle-specific geometries and the vari-
ation in shapes across classes posed significant challenges.

In summary, the model demonstrated minimal success
for the bottle class but failed to generalize the contain affor-
dance to other shape classes. Fig. 9 shows the ground truth
and predicted highlights for the bottle class, the only one
with detectable affordance regions.

(a) Ground Truth (b) Predicted

Figure 9. Ground truth vs. predicted highlights for the bottle class
in the test set; other classes showed no meaningful results.

4.5. Results and Discussion

The experiments revealed key challenges in affordance
detection. In Experiment 1, the action prompt with opti-
mized hyperparameters showed good generalization for the
cut affordance in the knife class, achieving a mean IoU of
0.542 on the test set. Experiment 2 highlighted poor gen-
eralization for multiple affordances (pushable, openable,

pull) in the door class, with very low mean IoU values,
emphasizing the difficulty of localized precision. Experi-
ment 3 demonstrated limited generalization of the contain
affordance across shape classes (bottle, vase, bowl), with
only the bottle class yielding meaningful results, albeit sub-
par. Overall, localized affordances struggled with gener-
alization, particularly across diverse geometries, and while
affordance-specific prompts occasionally improved perfor-
mance, they were inconsistent. The model’s reliance on
training geometries further limited its ability to generalize
across different object classes.

5. Extension of the pipeline

We explore several approaches to enhance model per-
formance through methodological variations. Our investi-
gation includes: evaluating dynamic background integra-
tion during rendering, implementing multiple augmenta-
tion techniques for improved robustness, testing alternative
backbone architectures, and validating with real-world Li-
DAR point cloud data. This systematic evaluation assesses
both model generalization across different scenarios and
practical viability in real-world applications.

5.1. Adding background and augmentation

We investigate two optimization strategies: background
diversity and image augmentation. For backgrounds, we
tested four types (two outdoor, two indoor) replacing the
standard black background. For augmentation, we imple-
mented four techniques:

* Balanced Transform: Moderate augmentations com-
bining random cropping (95-100%), perspective dis-
tortion (p=0.7, scale=0.3), and color adjustments
(x10%).

¢ Viewpoint Transform: Geometric transformations
with rotations (£15°), translations (£10%), scale vari-
ations (£10%), and perspective distortions (p=0.9,
scale=0.6).

¢ Lighting Transform: Color manipulations (+20%),
grayscale conversion (p=0.05), and Gaussian blur
(0=0.1-0.5).

e Default Transform: Minimal augmentation with
fixed-scale cropping and perspective distortion (p=0.8,
scale=0.5).



Augmentation Type  Background mloU
No background 0.4924
outdoor 1 0.3011
Balanced outdoor 2 0.3430
indoor 1 0.1657
indoor 2 0.1861
No background 0.5360
outdoor 1 0.3330
Viewpoint outdoor 2 0.4790
indoor 1 0.6639
indoor 2 0.3654
No background 0.5881
outdoor 1 0.3342
Lighting outdoor 2 0.5799
indoor 1 0.4261
indoor 2 0.0669
No background 0.6790
outdoor 1 0.3263
Default outdoor 2 0.4708
indoor 1 0.3851
indoor 2 0.1921

Table 6. Comparison of augmentation strategies and background
types by mloU, highlighting their varying effectiveness.

We applied these techniques to the Knife class with Cut
affordance using Config 5, measuring mean IOU over 3
shapes.

Results in Tab. 6, show that default augmentation
achieves highest mIoU (0.6790) with no background, while
viewpoint augmentation performs best with indoor back-
grounds (0.6639). Generally, adding backgrounds de-
creases performance, with outdoor backgrounds perform-
ing slightly better than indoor ones. These findings suggest
simpler backgrounds yield better results for affordance de-
tection systems.

5.2. Alternative Backbones

We explored the potential benefits of using OpenCLIP
with the ViT-H-14-378-quickgelu architecture [2], which
was trained on the extensive DFN-5B dataset, as an alter-
native backbone to the original CLIP model. Despite the
larger-scale training data and more sophisticated architec-
ture, this variant did not yield performance improvements
over the baseline CLIP model. The results showed consis-
tently lower performance metrics; thus, we omit the detailed
numerical results as they provide no additional insights into
model enhancement. Additionally, we investigated the pos-
sibility of incorporating OpenShape [5], a model specifi-
cally designed for direct 3D point cloud processing, which
could potentially eliminate the need for intermediate ren-

dering steps in our pipeline. However, due to computational
resource constraints and hardware limitations, we were un-
able to successfully integrate this model into our frame-
work. This remains an interesting direction for future work,
particularly in scenarios where more substantial computa-
tional resources are available. These experiments, while
not yielding immediate improvements, provide valuable in-
sights into the robustness of the original CLIP architecture
for our specific task and highlight important considerations
for future research directions in 3D affordance detection.

5.3. LiDAR

To validate our pipeline with real-world data, we col-
lected point cloud data using an iPhone 16 Pro’s LiDAR
sensor through the KIRI Engine application (see Fig. 10).
We tested the model’s ability to highlight the sit affordance
on a standard office chair using the action prompt: ”A 3D
render indicating the parts of the gray chair that can be
used to sit.” The results demonstrate our pipeline’s adapt-

Figure 10. 3D scan of chair using iPhone 16 Pro LiDAR.
ability to real-world LiDAR-acquired point clouds.

6. Conclusion

This work explores adapting the 3D Highlighter archi-
tecture for label-free affordance detection in point clouds,
highlighting key challenges and opportunities. Our system-
atic experimentation across different object classes and af-
fordance types revealed that performance is heavily influ-
enced by hyperparameter configuration and prompt engi-
neering strategies. Through extensive ablation studies, we
demonstrated that while the approach shows promise for
certain scenarios, significant challenges remain in achiev-
ing robust, generalizable affordance detection.

Future work should focus on improving cross-class gen-
eralization, developing more sophisticated prompt engi-
neering strategies, and investigating alternative neural ar-
chitectures specifically designed for 3D affordance under-
standing. Additionally, exploring ways to incorporate geo-
metric priors while maintaining the label-free nature of the
approach could potentially enhance performance on com-
plex, localized affordances.
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